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The objective of this paper is twofold: first, to examine how the concepts of 
extended irreversible thermodynamics are related to the notion of accom- 
panying equilibrium state introduced by Kestin; second, to compare the 
behavior of both the classical local equilibrium entropy and that used in 
extended irreversible thermodynamics. Whereas the former does not show a 
monotonic increase, the latter exhibits a steady increase during the heat transfer 
process; therefore it is more suitable than the former one to cope with the 
approach to equilibrium in the presence of thermal waves. 
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1. I N T R O D U C T I O N  

The fo rmula t ion  of the second law of t he rmodynamics  in nonequ i l ib r ium 
states has been a chal lenge for scientists since Clausius  and Lord  Kelv in  
s ta ted  this law a r o u n d  1850. Fif teen years later,  the in t roduc t ion  by  
Clausius  of  the concept  of  en t ropy  a l lowed for a r igorous  ma thema t i ca l  
fo rmula t ion  of the second law, at  least  for processes per formed  between 
equi l ib r ium states. F o r  instance,  in an isola ted  system at equi l ibr ium and 
in which several  in ternal  cons t ra in ts  are present ,  the r emova l  of  one of 
these cons t ra in ts  br ings the system t o w a r d  ano the r  equi l ibr ium state whose 
en t ropy  is equal  to or  h igher  than,  but  never  lower  than,  tha t  of the init ial  
state. 
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It is worthwhile pointing out that in equilibrium thermodynamics, 
time does not play any role: one compares the entropy of equilibrium 
states compatible with different internal and external constraints. Of 
course, problems involving time, as, for instance, how long the system will 
take to attain the final equilibrium state, are very important in practice, so 
that the status of the second law in nonequilibrium states is a topic of 
fundamental interest. 

It was recognized by Meixner [1] some years ago that nonequilibrium 
thermodynamics has many faces. The same observation was made by 
Kestin [2], who speaks of a veritable tour of Babel. Nevertheless, in the 
course of time a small number of theories have survived. Undoubtedly, the 
most successful formalism was the so-called classical theory of irreversible 
processes proposed by Onsager in the year 1930 [3] and developed later 
by several people, such as Prigogine [4], Meixner and Reik [-5], de Groot 
and Mazur [6], and Haase [7]. This theory is based on the local- 
equilibrium hypothesis, stating that "not too far from equilibrium" the 
system depends locally and instantaneously on the same variables as in 
equilibrium. This approach was generalized by Kestin and Bataille [8, 9], 
who introduced the notion of an accompanying equilibrium state. 

Departing radically from the aforementioned description are the works 
regrouped under the generic title of Rational Thermodynamics [10]. This 
theory was proposed by Coleman, Noll, Truesdell, and Gurtin and is 
characterized by its mathematical rigor. In the spirit of its authors, rational 
thermodynamics is general and applicable to any system whatever its 
distance from equilibrium is. Although it has known interesting successes, 
its insufficient emphasis on the physical foundations of its basic concepts 
has restrained its expansion [ 11]. 

During the last two decades, another thermodynamic formalism, 
known as extended irreversible thermodynamics (EIT), has grown up 
under the impulsion of many people such as Lebon et al. [12], Miiller 
[13], Garcia-Colin [14], Nettleton E15], and Eu [ t6] .  This theory was 
born out of the necessity to build a formalism which goes beyond the 
local-equilibrium hypothesis and would be less formal than rational 
thermodynamics with a wider physical support. 

The several versions of nonequilibrium thermodynamics are faced with 
common problems: What is nonequilibrium temperature? How do we 
define a nonequilibrium entropy? How do we exploit the consequences of 
the second law of thermodynamics? We do not have the pretension of 
solving these fundamental questions in this note, but more modestly, we 
wish to shed some light on the concept of nonequilibrium entropy through 
the ideas underlying EIT. 

This will be achieved by considering the simplest example found in any 
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textbook on thermodynamics: namely, the problem of heat transfer 
between two homogeneous bodies subject to a temperature difference. 

The aim of this paper is twofold: on one hand, to examine how the 
concepts of extended irreversible thermodynamics may be related to the 
conceptual idea of an accompanying equilibrium state proposed by Kestin 
in several publications [2, 8, 9] and, on the other, to compare the behavior 
of the entropy in local-equilibrium thermodynamics and in EIT. 

2. PHYSICAL STATE AND ACCOMPANYING 
EQUILIBRIUM STATE 

According to Kestin's point of view [2, 8, 9], any nonequilibrium 
physical state may be associated with an equilibrium state. This "accom- 
panying equilibrium state" is obtained by isolating the system suddenly 
with a rigid and adiabatic wall and letting it relax to equilibrium. This 
procedure allows for the introduction of supplementary variables with 
respect to the classical description of the Onsager-Prigogine school: these 
variables, called "internal variables," are associated with internal processes 
and are not controllable from the outside, contrary to temperature and 
stress. Internal variables are associated with chemical reactions, plastic 
deformations, etc., and do not participate in the mechanical external work 
and (or) heat input: Denoting by v the relaxation time toward the accom- 
panying equilibrium state, Kestin proposes to introduce the Deborah 
number defined as 

D='c/ ' r  M (1) 

to measure how far the system is out of equilibrium; rM stands for a 
macroscopic time scale given, for instance, by a/gt, where a denotes any 
local equilibrium variables, while fi represents its time derivative. Kestin's 
theory coupled with the introduction of internal variables has proved 
successful especially in solid continuum mechanics. 

The distinction between the physical state and the accompanying equi- 
librium state may be useful for a better understanding of the basic concepts 
underlying extended irreversible thermodynamicsl In this theory, the ther- 
modynamic fluxes (as heat flux, electric flux, mass flux, viscous pressure 
tensor, and so on) are included in the description of the nonequilibrium 
thermodynamic state, besides the classical variables (internal energy, elec- 
trical charge, volume, composition, and so on). It follows that in EIT, the 
nonequilibrium state is described by the set of variables formed by the 
classical ones and the thermodynamic fluxes. If, for the sake of simplicity, 
we consider a rigid heat conductor with internal energy U and a heat flux 

840/14~4-5 
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vector q, in EIT, the nonequilibrium state is described by U (or tem- 
perature T) and q, and in particular the entropy s is assumed to depend on 
both U and q (Fig. 1). 

According to Kestin, the accompanying equilibrium state would be 
obtained by isolating the system suddenly and letting it reach thermal equi- 
librium. Since the system has been isolated, its energy will remain constant 
during the decay toward equilibrium, so that the final accompanying state 
will be characterized only by U (the same energy as the initial physical 
state) and by a vanishing value of the heat flux. Obviously, the entropy 
associated with the accompanying equilibrium state is simply the equi- 
librium entropy corresponding to the internal energy U. Concerning the 
entropy to be assigned to the initial physical state, it is given by 

Sin(U, q)=Xn.(U)-v I a dt (2) 

where a is the entropy production per unit time and unit volume during 
the decay from the initial physical state to the final accompanying equi- 
librium state, v is the volume of the system. 

If one takes into account that the entropy production is [123 

a=(1/2T2)q.q (3) 

and if one assumes that q decays exponentially according to the Vernotte 
Cattaneo equation [12] 

~/1 + q = - 2  A T (4) 

i.e., q(t)=q(O)exp(-t/r), with r the relaxation time, one finds from 
Eqs. (2) and (3) that 

Sin(U, q) = S~q(U)- (zv/22T 2) q .q 

T+d -dT T 

(5) 

q=O 

PHYSICAL STATE ACCOMPANYING STATE 

Fig. 1. The physical state is characterized by internal energy u and heat 
flux q, whereas the accompanying equilibrium state is described only by u, 
because the heat flux vanishes at equilibrium. 
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which is the usual expression for the generalized entropy of EIT for rigid 
heat conductors up to the second order in the heat flux. 

It can thus be claimed that the entropy used in EIT corresponds to the 
entropy of the physical state, whereas the local-equilibrium entropy is the 
entropy of the accompanying equilibrium state. It must be observed that q 
is not necessarily related to the presence of internal variables: a heat flux 
may be present in an ideal monatomic gases which does not contain any 
internal variable at all. However, for more general systems, q may originate 
from several contributions, some coming from the molecular translational 
motion and others coming from internal degrees of freedom or internal 
variables. In that respect, EIT is more general than internal variable 
theories. 

It is also interesting to compare the expressions for the absolute 
temperature defined in the space of the physical state and in the space of 
the accompanying state; they are given, respectively, by [-12] 

0 - 1  : ( O S p h y s ( U  , q)/~U)q, T - 1 :  ((~Seq(U)/(~U) (6) 

The main difference is that the physical 0 is a function of q, while the 
"accompanying" T depends only on the internal energy U. We refer the 
reader interested in this topic to Ref. 17. 

The aim of the next sections is to make as clear as possible the 
differences between the entropy in the physical space and the entropy in the 
accompanying equilibrium space. 

3. LOCAL-EQUILIBRIUM THEORY 

To be the most comprehensible, we address our attention to one of the 
simplest processes in thermodynamics: heat transfer between two rigid 
bodies at different temperatures. Initiall'y, the two bodies are separated by 
an adiabatic and rigid wall. If at a given moment, only the adiabatic con- 
straint is removed, heat will flow from one body to the other without either 
work performed or mass carried. In this section, the analysis is restricted 
to discontinuous systems, but it can easily be generalized to continuous 
media. We successively analyze the heat transfer problem in the framework 
of the classical and the extended descriptions of nonequilibrium thermo- 
dynamics. 

Let us start with the local-equilibrium formulation. Consider an 
isolated system c.omposed of two bodies (subsystems) at temperatures T~ 
and T2 (< Tj), respectively. Each subsystem supposed isolated is in inter- 
nal (local) equilibrium, which means that the internal temperature changes 
are negligible compared to the temperature difference T~ - 7"2 and that the 
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only nonequilibrium region is the exchange wall. In virtue of the local-equi- 
librium hypothesis, the entropy S of the total system is the sum $1 + $2 of 
the entropies of each subsystem with $1 and $2 functions, respectively, of 
the internal energies U1 and U2 of subsystems 1 and 2 even during the heat 
transfer process: S = S(U1, U2) = SI(U1) + $2(U2). When the adiabatic wall 
separating the two subsystems is replaced by a diathermal one, the 
time-rate variation of entropy of the total system is 

dS dS1 dS 2 dUl dU2 
dt - d~- ~--'-~-= T;1 --~-+ T21 dt (7) 

Since the total system is isolated, one has dU 1 + dU 2 = 0 ,  and from the first 
law of thermodynamics, 

dU 1 dU 2 
- 0 (8) 

dt dt 

where ~) is the amount of heat exchanged between subsystem 1 and 
subsystem 2 per unit time. In fact, Q is also the heat flux integrated over 
the surface separating the two bodies and can be related to the heat flux 
vector q by 

= - f  q .n dA (9) 0 
d 

where A is the bounding surface with unit normal n pointing outward from 
the system. By convention, energy input will be positive and energy release 
negative. 

For an isolated system, Eq. (7) represents the rate of entropy produced 
inside the system; in virtue of Eq. (8), it can be written as 

dS 
d t -  ( T ~ I -  T2~) o (10) 

which, according to the usual formulation of the second law, is non- 
negative. This implies that the integrated heat flux Q > 0 and, therefore, 
heat can flow only from the region of highest temperature to the region of 
lowest temperature, which is the original Clausius formulation of the 
second law. 

The simplest hypothesis ensuring the positiveness of Eq. (10) is to 
assume that the heat flux Q is proportional to the driving force 
( T i -  1 _ T 2 1 ) ,  so that 

Q= - K ( T ?  1 -  T21) (11) 
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with K a positive coefficient. If the temperature difference is small, one may 
linearize this relation and give it the usual form 

0 = K ' ( T , -  r2) (12) 

with K' = K T  -2 assumed to be a constant and T an intermediate tem- 
perature between T1 and T2; Eqs. (11) and (12) are generally referred to 
as Fourier's law.  

In the course of time, the evolution equation for the temperature 
of each subsystem is easily found by recalling that dU1 = C1 dT1 and 
dU2= C2 dT2, with C1 and C2 the heat capacities of the respective 
subsystems. Combining this result with Eq. (8), it is found that the 
temperature difference e = T1 - T2 varies as 

de 
-Oc  1 (13) 

with C~rr~= C~-1+C2 -1. When Eq. (12) is introduced into Eq. (13), one 
finds 

de 
- - =  - K " e  (14) 
dt 
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Fig. 2. Time evolution of the temperature difference e 
calculated from expression e = e 0 e x p ( - K " t )  (curve a) and 
time evolution of the corresponding local-equilibrium 
entropy S as given by Eq. (8) (curve b). Time is expressed 
in terms of 1/K", while % =  10 and T - 2 K  ' =0.4. 
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with K " = K ' C ~  1. Thus, e decays exponentially like E=eoexp[ - -K" t ] ,  
and after an infinite lapse of time the temperature inside the system is 
uniformized. In view of Eqs. (10) and (13) the rate of evolution of entropy 
may be written in terms of the temperature difference e as 

d S  _ T _  2 K '  d~ 
dt - ~  g -d7 (15) 

It is thus seen that the entropy is a monotonically increasing function of 
time. The evolution of e and of S is presented in Fig. 2. 

4. HEAT CONDUCTION WITH INERTIAL EFFECTS 

So far with the classical theory. Consider now the more general situa- 
tion in which heat transfer is not described by a Fourier law [-Eq. (11)] 
but, rather, by 

dO 
z --dT+ 0 = - K ( T ~  ~ - T ; ' )  (16) 

where r is the positive relaxation time of the heat flux {). The generaliza- 
tion of Eq. (16) to continuous media is the Vernotte-Cattaneo equation 
(4). Equation (16) has several motivations. Fourier's law leads to infinite 
speed of propagation of thermal signals, whereas the Vernotte-Cattaneo 
equation predicts finite speed of propagation. From a practical point of 
view, this is not an important drawback and Fourier's equation is known 
to provide a very good description of thermal phenomena in most 
circumstances. Nevertheless, it must be kept in mind that Fourier's law is 
an approximation which is not valid at high frequencies. Equation (16) is 
the simplest way to incorporate high-frequency effects. More general 
descriptions including such effects are provided by the memory-function 
formalism: Eq.(16) corresponds simply to an exponential memory 
function [12]. 

The interest in high-frequency phenomena in condensed matter has 
been fostered by light-scattering experiments in gases, neutron scattering 
in liquids and solids, and numerical simulations of molecular dynamics. 
A wide field of research known as generalized hydrodynamics [18] is 
presently concerned with the study of such phenomena. High-frequency 
effects in heat conduction may be of interest for interpreting explosions, 
laser-induced nuclear fusion, or fast collapse of supernovae. More 
particularly, Eq. (16) and some generalizations have proven useful for 
describing heat waves in solids at low temperatures [19]. Note that an 
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indiscriminate use of the Vernotte-Cattaneo equation is not possible in any 
circumstance, because it does not preclude negative absolute temperatures. 
However, in practice, both z and K depend on the temperature and a 
nonlinear analysis should be taken into account. 

It is legitimate to ask for the implications of Eq. (16) on the formula- 
tion of the second law. After combining Eqs. (13) and (16), one finds for 
the evolution of the temperature difference e 

d2g de 
~ ) 7 +  ~ +  X"~ : 0 (17) 

This equation is similar to the equation of motion of a damped pendulum. 
The decay is not always exponential but may exhibit an oscillatory 
behavior (Fig. 3), when the condition 4zK"> 1 is satisfied. In continuous 
systems, the exponential decay would correspond to heat diffusion pertur- 
bation, whereas an oscillation in ~ would correspond to a propagating heat 
wave. 

It is interesting to examine the behavior of the entropy S as a function 
o f  time in the case of an oscillatory decay of e. According to Eq. (15), 
S behaves as a nonmonotonic function as represented by curve b in Fig. 3. 
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Fig. 3. Evolution of the temperature difference ~, (curve a), the 
local-equilibrium entropy S[UI(t), U2(t)] (curve b), and the 
generalJzcd entropy S*[Ul(t), U2(t), 0 ( t ) ]  (curve c) as a function 
of time during the oscillatory approach to equilibrium; curve c has 
been calculated for ~ = 2/K". Note the monotonJca] increase in S* 
compared "with the nonmonotonical increase in S. 
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A most interesting situation is now displayed. Whereas the Clausius 
statement that the final equilibrium entropy is higher than the initial 
equilibrium entropy is still satisfied, in contrast, the local-equilibrium 
entropy is no longer a monotonically increasing function of time. In virtue 
of the local-equilibrium hypothesis, the evolution Eq. (16) should therefore 
be rejected. However, such an equation is confirmed experimentally, as it 
has been mentioned earlier. We thus remain confronted with the fundamen- 
tal problems of the definition of entropy and the formulation of the second 
law in nonequilibrium situations. 

In that respect, two questions arise. First, is the second law, as 
formulated in most textbooks, able to cope with the temporal evolution 
of processes? Second, does an expression of the nonequilibrium entropy 
compatible with the transport equation [Eq. (16)] exist? 

5. EXTENDED IRREVERSIBLE THERMODYNAMICS 
DESCRIPTION 

Let us discuss the answers provided by extended irreversible 
thermodynamics. In this formalism the heat flux Q is considered as an 
independent variable and is included among the set of independent 
variables appearing in the expression of the entropy. The proposed form 
of the generalized entropy in extended irreversible thermodynamics is 
therefore S*(U1, U2, Q.), wherein an asterisk refers to the generalized 
entropy. The rate of variation of S* is 

dS* dr, dr2 dO 
dt = T~-' --~-+ T f  ~ d--i-- -~  (18) 

where - a (Q) ,  an undetermined function of Q, is defined as the derivative 
of S* with respect to Q. For simplicity, a(Q) is assumed linear in 
Q: a(Q) = aQ, where a is a constant. After using the law of conservation of 
energy expressed by Eq. (8), Eq. (18) becomes 

dS* (19) dt : --(Tll-- T21) 0 --aQ dQdt 

For small temperature differences, dS*/dt takes the form 

(20) 



Nonequilibrium Entropy and the Second Law 681 

The simplest way to ensure the positiveness of the entropy production 
dS*/dt  is to assume the linear relation 

(21) 

with K a positive constant. In the steady state, dO/d t=O and Eq. (21) 
reduces to Fourier's law given by Eq. (12). A further comparison of 
Eq. (21) with the Vernotte-Cattaneo equation [Eq. (16)] indicates that 
a K =  ~. Collecting these results, one obtains 

dt ~- - ( T I 1  - T21 )  0 - 0 goat 

or, in an integrated form, 

( r  2 s*(u~, u2, O)=&(u~)+ & ( u J -  ~-~ (23) 

Observe that in the limiting case ~ = 0, the above expression reduces to the 
local-equilibrium entropy. The last term in the right-hand side of Eq. (23) 
may be viewed as expressing the interaction between subsystem 1 and sub- 
system 2. The minus sign in the nonclassical term in Eq. (23) is introduced 
to ensure that S* is maximum at equilibrium, i.e., for Q = 0. 

According to Eqs. (20) and (21), the time variation of S* may simply 
be written as 

d S *  K 102 K -1 2 ( d ~  2 T-2K' {dF'~ 2 
dt = Cerr \ d t /  - X "2 \ d t ]  >>" 0 (24) 

This expression is either positive or zero but never negative. 

6. C O N C L U D I N G  REMARKS 

The evolution of S*[UI ( t ) ,  U2(t ), Q(t)] as a function of time is 
presented in Fig. 3 (curve c) for the exponential approach to equilibrium; 
it is compared with the time evolution of the classical local-equilibrium 
entropy (curve b). 

It is seen that the entropy of extended irreversible thermodynamics 
never exceeds the corresponding values of the local-equilibrium entropy, 
but more important and in contrast with the latter, it monotonically 
increases in the course of time. This result suggests to define a rather 
general nonequilibrium entropy which is not the local-equilibrium entropy 
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but which reduces to it in equilibrium. The presence of the fluxes influences 
not only the expression of entropy but also the intensive parameters, such 
as temperature and pressure, defined as derivatives of entropy with respect 
to the extensive internal energy and volume respectively. 

Clearly, local-equilibrium thermodynamics is too restrictive as it leads 
to the rejection of some evolution equations such as the Vernotte-Cattaneo 
expression which are experimentally observed. This has motivated our 
attitude to include the dynamics of the system into the definition of a 
nonequilibrium entropy. 

It may thus be concluded that, as asserted by Clausius in 1865, it is 
possible to formulate the second law in terms of a macroscopic entropy 
whose evolution in the course of time is never negative. 

It is worth noting that this is not equivalent to the first Clausius for- 
mulation of the second law, expressing the impossibility of a spontaneous 
heat flow from a cold to a hot body. It follows from Eq. (16) that, due to 
inertial effects, a heat flux may run spontaneously from a cold to a hot 
region during relatively short instants of time. Of course, the total amount 
of heat exchanged during the whole process will indeed proceed from the 
initially hot toward the initially cold body, but this result cannot be inter- 
polated to any interval of time. 

Extended irreversible thermodynamics has been applied to a wide 
variety of topics such as hydrodynamics, electromagnetism, rheology, 
cosmology, and biophysicm The basic ideas underlying EIT have been con- 
firmed by microscopic theories such as the kinetic theory of gases and the 
projection-operator method in nonequilibrium statistical mechanics [12]. 
Extended irreversible thermodynamics is not limited to simple relaxational 
equations such as Eq. (16) but can cope with a much wider range of evolu- 
tion equations involving several relaxation schemes and nonlinearities 
[12]. 

Finally, it is pertinent to mention that, from a phenomenological point 
of view, the existence of nonequilibrium processes beyond the local- 
equilibrium regime is a fact of experience that legitimates an approach like 
that of EIT. By no means does it imply that this formalism constitutes a 
universal and unique receipt for describing irreversible processes, but in our 
opinion, it provides a promising step toward the formulation of a unified 
nonequilibrium thermodynamics. 

ACKNOWLEDGMENTS 

This work was partially sponsored by the Commission of the 
European Communities--Human Capital and Mobility Program, Contract 
ERB 4050 PL 920346. Two of us (D.J. and J.C-V.) wish to thank the 



Nonequilibrium Entropy and the Second Law 683 

DGICyT of the Spanish Minstry of Education and Science for its financial 
support (PB90-0676). G. Lebon acknowledges the Belgian Programme on 
Interuniversity Poles of Attractions (PAI Nos. 21 and 29) initiated by the 

Belgian State, Prime Minister's Office, Science Policy Programming. 

REFERENCES 

1. J. Meixner, Ann. Phys. (Leipzig) 43:244 (1943); in Irreversible Aspects of Continuum 
Mechanics and Transfer of Physical Characteristics in Moving Fluids, H. Parkus and L. I. 
Sedov, eds., IUTAM Symposia, Vienna, 1964 (Springer, Vienna, 1968). 

2. J. Kestin, J. Non-Equilib. Thermodyn. 15:193 (1990); Int. J. Sol. Struct. 29:1827 (1992). 
3. L. Onsager, Phys. Rev. 37:405 (1931); 38:2265 (1931). 
4. I. Prigogine, Introduction to the Thermodynamics of Irreversible Processes (Interscience, 

New York, 1961). 
5. J. Meixner and H. Reik, Thermodynamik der Irreversiblen Prozesse, in Handbuch der 

Physik, III/2, S. Flfigge, ed. (Springer, Berlin, 1959). 
6. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, 

Amsterdam, 1962). 
7. R. Haase, Thermodynamics of Irreversible Processes (Addison-Wesley, Reading, MA, 

1969). 
8. J. Kestin and J. Bataille, J. M~can. 14:365 (1975). 
9. J. Kestin and J. Bataille, J. Non-Equilib. Thermodyn. 1:1 (1976); 4:229 (1979). 

10. C. Truesdell, Rational Thermodynamics (Springer, New York, 1969). 
11. R. S. Rivlin, in Foundations of Continuum Thermodynamics, J.J. Domingos, M.N.R. 

Nina, and J. H. Wbitelaw, eds. (Macmillan, London, 1974), and in Proceedings of the 9th 
International Congress on Rheology, Mexico, 1984; L. C. Woods, Bull. Inst. Math. Appl. 
17:98 (1981). 

12. G. Lebon, D. Jou, and J. Casas-V~zquez, J. Phys. A Math. Gen. 13:275 (1~)80); J. Casas- 
V~zquez, D. Jou, and G. Lebon (eds.), Recent Developments in Nonequilibrium Thermo- 
dynamics (Springer, Berlin, 1984); D. Jou, J. Casas-V~zquez, and G. Lebon, Rep. Prog. 
Phys. 51:1105-1179 (1988); J. Non-Equilib. Thermodyn. 17 (1992); G. Lebon, D. Jou, and 
J. Casas-Vfizquez, Contemp. Phys. 33:41 (1992). 

13. 1. Miiller, Thermodynamics (Pitman, London, 1985); B.C. Eu, J. Chem. Phys. 73:2969 
(1980). 

14. L. S. Garcia-Colln, Rev. Mex. Fis. 34:344 (1988); L.S. Garcia-Colin and F.J. Uribe, 
J. Non-Equilib. Thermodyn. 16:8 (1991). 

15. R. E. Nettleton, Phys. Fluids 3:216-225 (1960); P. Salamon and S. Sieniutycz (eds.), 
Extended Thermodynamic Systems (Taylor and Francis, New York, 1992). 

16. B. Eu, J. Chem. Phys. 73:2958 (1980); several articles published in J. Chem. Phys. 
17. J. Casas-V~.zquez and D. Jou, 3. Phys. A 14:1225 (1980); D. Jou and J. Casas-Vfizquez, 

Phys. Rev. A 45:8371 (1992). 
18. P. Boon and S. Yip, Molecular Hydrodynamies (McGraw-Hill, New York, 1980). 
19. D. D. Joseph and L. Preziosi, Rev. Mod. Phys. 61:41 (1989); 62:375 (1990); R. A. Guyer 

and Krumhansl, Phys. Rev. 148:766 (1966); G. Lebon and P.C. Dauby, Phys. Rev. A 
42:4710 (1990). 


